
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 
 

Approved for public release; distribution is unlimited 

VALIDATION OF OPERATIONAL GLOBAL WAVE 
PREDICTION MODELS WITH SPECTRAL BUOY DATA 

 
by 
 

Karen M. Wingeart 
 

December 2001 
 
 

 Thesis Advisor:   Thomas H.C. Herbers 
 Co-Advisor: Paul A. Wittmann 



Report Documentation Page

Report Date 
19 Dec 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Validation of Operational Global Wave Prediction
Models with Spectral Buoy Data

Contract Number 

Grant Number 

Program Element Number 

Author(s) 
Wingeart, Karen

Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Naval Postgraduate School Monterey, California

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and 
Address(es) 

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
The original document contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
57



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
December 2001 

3. REPORT TYPE AND DATES COVERED 
Master�s Thesis 

4. TITLE AND SUBTITLE:  Title (Mix case letters) 
Validation of Operational Global Wave Prediction Models with Spectral Buoy Data 
6. AUTHOR(S) Karen M. Wingeart 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 
Global wave predictions produced at two U. S. forecasting centers, Fleet Numerical Meteorology and Oceanography Center 
and the National Centers for Environmental Prediction are evaluated with spectral buoy measurements.  In this study, the 
fidelity of frequency-directional spectra predicted by WAM and WAVEWATCH III at the operational centers is examined with 
data from 3-meter discus and 6-meter nomad buoys operated by the National Data Buoy Center in the Atlantic and Pacific 
Oceans and Datawell Directional Waverider buoys deployed along the California coast by the Scripps Institution of 
Oceanography Coastal Data Information Program.  Only buoys located in deep water are used in the comparisons.  Model 
nowcasts of frequency spectra and mean wave directions are compared to buoy measurements over a six-month period from 1 
October 2000 to 31 March 2001.  At the Pacific buoy locations, individual swell events were identified in the spectra from the 
three models and the buoy data.  Predicted and observed swell frequencies and arrival directions are compared as well as the 
total energy transported past the buoy over the duration of each individual event.  At all buoy locations, predicted and observed 
wave energy fluxes integrated over fixed frequency ranges are compared.  All three models yield reliable nowcasts of swell 
arrivals at the buoy locations.  In most cases, the models under-predict the energy measured by the buoys.  WAVEWATCH III 
better resolves low-frequency swells than WAM, possibly owing to a superior numerical scheme.  Swell predictions at NCEP 
forced with AVN winds are more accurate than those at FNMOC forced with NOGAPS winds.  
 
 
 
 
 

15. NUMBER OF 
PAGES  

57 

14. SUBJECT TERMS  Global Wave Prediction Models, WAM, WAVEWATCH III, swell, wave 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 
 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii



 iv

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 
 
 
 

Global wave predictions produced at two U. S. forecasting centers, Fleet 

Numerical Meteorology and Oceanography Center (FNMOC) and the National Centers 

for Environmental Prediction (NCEP) are evaluated with spectral buoy measurements.  In 

this study, the fidelity of frequency-directional spectra predicted by WAM and 

WAVEWATCH III at the operational centers is examined with data from 3-meter discus 

and 6-meter nomad buoys operated by the National Data Buoy Center in the Atlantic and 

Pacific Oceans and Datawell Directional Waverider buoys deployed along the California 

coast by the Scripps Institution of Oceanography Coastal Data Information Program.  

Only buoys located in deep water are used in the comparisons.  Model nowcasts of 

frequency spectra and mean wave directions are compared to buoy measurements over a 

six-month period from 1 October 2000 to 31 March 2001.  At the Pacific buoy locations, 

individual swell events were identified in the spectra from the three models and the buoy 

data.  Predicted and observed swell frequencies and arrival directions are compared at the 

Pacific buoy locations, as well as the total energy transported past the buoy over the 

duration of each individual event.  At all buoy locations, predicted and observed wave 

energy fluxes integrated over fixed frequency ranges are compared.  All three models 

yield reliable nowcasts of swell arrivals at the buoy locations.  In most cases, the models 

under-predict the energy measured by the buoys.  WAVEWATCH III better resolves 

low-frequency swells than WAM, possibly owing to a superior numerical scheme.  Swell 

predictions at NCEP forced with AVN winds are more accurate that those at FNMOC 

forced with NOGAPS winds. 
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I. INTRODUCTION 

 Third generation wave prediction models that describe the evolution of the two-

dimensional ocean wave spectrum are widely used in global and regional applications.  

The first of these models, WAM, was developed in 1988 by the WAMDI Group 

(WAMDI Group, 1988) and was adopted for operational use by the Fleet Numerical 

Meteorology and Oceanography Center (FNMOC) in 1994.  It solves the wave action 

balance equation in spherical coordinates for a two-dimensional wave spectrum. 

 ( , , , , )
in nl ds

DE f t S S S
Dt
� � �

� � �  (1) 

where E is the action density as a function of wave frequency ( f ), propagation direction 

(� ), latitude (� ), longitude (� ), and time ( t ), and D/Dt is the total derivative following 

a wave group.  The source function, S, represents the net rate of increase of the wave 

action of a spectral component resulting from wind input, non-linear interactions with 

other spectral components, and dissipation induced by wave breaking.  The wind input 

source function ( inS ) is scaled in terms of friction velocity u* (Janssen, 1991), based on 

Charnock's original boundary layer model (WAMDI Group, 1988).  The dissipation 

source function ( dsS ) is a slight modification to the semi-empirical form that Komen et 

al. (1984) proposed, replacing the mean frequency by the inverse of the mean period to 

enhance the stability of the implicit integration scheme and enable a larger time step 

(WAMDI Group, 1988).  The non-linear source function ( nlS ) describes resonant quartet 

interactions with the simplified parameterization of the Boltzman interaction integral 

(Hasselmann et al., 1985).  The model uses an implicit integration scheme for the source 

functions and a first-order upwind propagation scheme with a fixed time step of 20 

minutes (WAMDI Group, 1988).  The FNMOC WAM model is forced by the Navy's 

atmospheric prediction system NOGAPS 3.4 surface wind stress. 

The global WAVEWATCH III (WW3) model, operational at the National Centers 

for Environmental Prediction (NCEP), was first developed for shelf sea applications by 

Tolman (1991), and is gaining wide acceptance in the wave forecasting community.  It is 

similar to WAM in structure, but incorporates wave-current interactions, a more 



 2

sophisticated third-order numerical propagation scheme, new formulations of wind input 

and dissipation source terms (Tolman and Chalikov, 1996; based on Chalikov and 

Belevich, 1993).  The wind input source function ( inS ) is calculated at 10-meter height 

based on the wind speed and direction rather than the friction velocity used in WAM 

(Tolman and Chalikov, 1996).  The dissipation source function ( dsS ) is defined by a 

linear combination of two constituents, low-frequency dissipation and high-frequency 

dissipation.  The dissipation of low-frequency swell is assumed to be similar to the 

energy dissipation due to turbulent viscosity in the oceanic boundary layer, which 

disappears when the wind and/or high-frequency waves vanish (Tolman and Chalikov, 

1996).  The parameterization for the high-frequency dissipation is purely diagnostic 

because wave energy dissipation for this part of the spectrum is poorly understood.  An 

important consequence of these differences is the more rapid wave growth under strong 

wind forcing in the WW3 model.  The WW3 wind input source term becomes negative 

for waves that travel faster than the wind or at large angles to the wind, is 2-3 times 

smaller than WAM for fully developed seas, but larger at high frequencies.  The FNMOC 

WW3 model is forced by NOGAPS 3.4 winds at 10-meter elevation and the NCEP WW3 

winds are obtained from NCEP's operational Global Data Assimilation Scheme (GDAS) 

and the Aviation cycle of the Medium Range Forecast model (AVN), assuming neutral 

stability and adjusted to 10 meter elevation. 

The WW3 model solves the spectral action density balance equation in the wave 

number-directional domain.  Like WAM, the WW3 model assumes that the wave 

spectrum and medium variations (water depth and surface current field) vary on time and 

space scales much larger than those for a single wave, and thus can only be applied on 

spatial scales larger than a few kilometers and outside the surf zone because the physics 

are not valid for regions of severely depth-limited waves.  In August 2001, WW3 

replaced WAM at FNMOC as the operational wave prediction model.   

Global wave prediction models can be validated with data from buoys as well as 

satellite altimetry.  The National Data Buoy Center (NDBC) operates a large number of 

buoys along the coastlines of the United States and Canada that provide standard 

atmospheric data (e.g. wind speed and direction) and detailed wave measurements.  
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These buoys include directional buoys that measure frequency-directional wave spectra 

and non-directional buoys that measure only frequency spectra.  The Coastal Data 

Information Program (CDIP) of the Scripps Institution of Oceanography also operates 

directional wave buoys, located mainly along the California coast.  Unfortunately, these 

extensive buoy networks are concentrated along a few coastlines and very little buoy data 

is available in the central ocean basins and along other continents. Satellite altimetry from 

ERS-2 and the Navy�s Geosat Follow-On (GFO) provide global coverage of more limited 

wind speed and wave height information.  Whereas the NDBC buoys report every hour 

and CDIP buoys report every half hour, providing near-continuous real time data, polar-

orbiting satellites only provide altimetry data every 12 hours. 

Previous studies were conducted at NCEP using ERS-2 altimetry data and buoy 

data to validate both forecasts and hindcasts of the WW3 and WAM models (Tolman, 

1998).  To use all the satellite data available and have good global coverage, the forecast 

validation considers a 12-hour window around the valid time, co-locating the satellite and 

model data with tri-linear interpolation from hourly wave fields.  Biases, root mean 

square errors, and scatter indices were examined for both data sets.  Results from the 

validation with buoy data indicated a large positive bias and high scatter index in the 

Pacific Regions, especially near Hawaii where sheltering from the islands during the 

Northern Hemisphere winter interferes with swell propagation from the north.  The 

models had a negative bias in the Atlantic because winds are underestimated close to 

shore where the AVN model averages winds over land and sea regions.  Results from the 

validation with ERS-2 altimetry data also revealed larger errors during the Northern 

Hemisphere winter near island chains, such as Hawaii.  The NCEP validation study of 

WW3 and WAM concluded that no significant difference between the two models 

existed near these island chains.  Neither model accounts for the sheltering from the 

islands because their grid sizes are too large to represent the islands (Tolman, 1998a). 

A subsequent WW3 and WAM validation study conducted at FNMOC used 48 

NDBC buoys grouped into nine geographic regions and ERS-2 satellite altimetry wave 

height data.  Root mean square error, mean error, and scatter indices were examined on 

both a global and regional basis.  A six-hour window around the validation times was 
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used, centered on 00, 06, 12, and 18z synoptic times.  Results from the validation with 

ERS-2 altimetry data indicated that WW3 had a smaller wave height error overall than 

WAM.  Results from the validation with the buoy data indicated that, except for Hawaii 

and the United Kingdom, WAM had smaller errors than WW3.  The study also concluded 

that WW3 lags WAM and the buoy observations for swell arrivals and during increasing 

wave height events (Wittmann, 2001). 

 The objective of this thesis is to test the WW3 model implementation at FNMOC 

and to develop a methodology for comparing spectral information from the models with 

buoy data.  The study was conducted over a six-month period from 1 October 2000 to 31 

March 2001, generally considered to be the Northern Hemisphere winter.  Preliminary 

comparisons of the three models are presented at deep water locations.  Fifteen buoy 

locations were used in the study, which include three CDIP buoys located off the coast of 

southern California and twelve NDBC buoys located in both the Pacific and Atlantic 

Oceans.  The buoys were used as ground truth in evaluating model predictions of swell 

energy as a function of frequency and time as well as the directional characteristics of the 

swells.  

 This thesis is organized into five chapters.  Chapter II describes the operational 

model implementations at FNMOC and NCEP, the various buoy data used in the study, 

and the model validation methodology.  The results for the fifteen buoy locations are 

presented in Chapter III.  Overall model skill is discussed in Chapter IV, followed by a 

summary in Chapter V.   
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II. MODELS, DATA, AND ANALYSIS 

A. GLOBAL WAVE MODEL IMPLEMENTATION 
The three models used in the validation study are WAM (implementation WAM, 

cycle 4.0, Wittmann and Clancy, 1993) and WAVEWATCH III (WW3) at Fleet 

Numerical Meteorology and Oceanography Center (FNMOC) and WW3 at the National 

Centers for Environmental Prediction (NCEP).  Until recently, both WAM and WW3 

were run in parallel at FNMOC, on a global 1° latitude by 1° longitude grid, with an 

integration domain extending from 78 N to 78 S.  Both models have identical landmass 

and ice edges.  The WAM model is forced by the Navy's atmospheric prediction system 

NOGAPS 3.4 surface wind stress, and WW3 at FNMOC is forced by NOGAPS 3.4 

winds at 10-meter elevation.  Both models use a three-hour wind time step.  The WW3 

model at NCEP uses a 1° latitude by 1.25° longitude grid and a dynamically adjusted ice 

edge updated daily from NCEP's automated passive microwave sea ice concentration 

analysis (Grumbine, 1996).  The winds from NCEP's operational Global Data 

Assimilation Scheme (GDAS) and the Aviation cycle of the Medium Range Forecast 

model (AVN) are adjusted to 10-meter elevation assuming neutral stability.  Except for 

the wind forcing and grid, the NCEP WW3 and FNMOC WW3 models are virtually 

identical.  All three models use approximately the same spectral discretization with 25 

frequencies that are logarithmically spaced with an increment factor of 1.1 and 24 

directions that span 360° in 15° increments.  The wave model time step in WAM is fixed 

for both the propagation and source terms (20 minutes).  The WW3 model uses a variable 

time step for both propagation and source term integration to increase the model 

efficiency.  The overall time step is one-hour, with a minimum of 5 minutes for the 

source term and a maximum of 1300 seconds for the propagation time step (Tolman, 

1999).   

B. BUOY DATA 
Fifteen buoys located in deep water in the Atlantic and Pacific oceans were 

selected for the validation, twelve from the National Data Buoy Center (NDBC) and three 

from the Coastal Data Information Program (CDIP).  The buoys, listed in Table 2.1, 
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include both directional and non-directional buoys.  Figures 2.1-2.3 show the buoy sites 

and corresponding model grid points used for this study.  The grid points for the FNMOC 

WW3 and WAM models are co-located with each other, but not necessarily with the 

NCEP WW3 model grid point or the buoy site.  The NCEP WW3 model grid points only 

coincide with three buoy sites. 

Name Number Latitude Longitude Depth Type 
150 nm E. Cape Hatteras NDBC 41001 34.68 N 72.23 W 4389.1 m Nomad 
Canaveral East NDBC 41010 28.89 N 78.52 W 841.2 m Nomad 
Georges Bank NDBC 44011 41.09 N 66.59 W 88.4 m Nomad 
Santa Maria NDBC 46011 34.88 N 120.87 W 185.9 m 3 m discus
Point Arena NDBC 46014 39.22 N 123.97 W 264.9 m 3 m discus
Eel River NDBC 46022 40.72 N 124.52 W 274.3 m 3 m discus
C. San Martin NDBC 46028 35.74 N 121.89 W 1111.9 m 3 m discus
Monterey NDBC 46042 36.75 N 122.42 W 1920.0 m 3 m discus
Tanner Banks NDBC 46047 32.43 N 119.53 W 1393.5 m 3 m discus
California NDBC 46059 37.98 N 130.00 W 4599.4 m Nomad 
Point Conception NDBC 46063 34.25 N 120.66 W 598.0 m Nomad 
Christmas Island DWA NDBC 51028 0.00 N 153.88 W 4755.0 m 3 m discus
Point Reyes CDIP 02901 37.95 N 123.47 W 320 m Datawell 
San Nicholas Island CDIP 06701 33.22 N 119.84 W 183 m Datawell 
Point Conception CDIP 07101 34.56 N 120.78 W 549 m Datawell 
Table 2.1. NDBC and CDIP buoys used in the validation study.  CDIP buoys 02901, 

06701, and 07101, and NDBC 46042 and 51028 are directional buoys. 

 
Figure 2.1. Buoy sites (blue dots) used in this validation study. 
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Figure 2.2. East Coast buoy sites and nearby model grid points used in the 

comparisons. 

 
Figure 2.3. West Coast buoy sites and nearby model grid points used in the 

comparisons. 

1. National Data Buoy Center 
The National Data Buoy Center operates more than 200 buoys along the coastline 

of the United States in both deep and shallow waters and provides reports from over 80 

other buoys operated by Canada, Meteo France, and the UK Met Office.  Three types of 
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NDBC buoys were used in this study: 6-meter nomad, 3-meter non-directional discus, 

and 3-meter directional discus (Figure 2.4).  All buoys have a heave acceleration sensor 

that provides a record of the vertical displacement of the buoy during a twenty-minute 

sampling interval.  The buoy processor applies a Fast Fourier Transform (FFT) to the 

data to transform the temporal data into the frequency domain.  The directional buoys 

have a heave-pitch-roll sensor that measures the sea surface height and tilt in the x-y 

directions.  All buoys report spectral wave density in m2/Hz for each frequency band 

(0.03 to 0.40 Hz) every hour, together with various bulk wave statistics such as 

significant wave height, average wave period, dominant wave period, as well as wind 

speed and direction measurements, and other standard meteorological data.  In addition, 

the directional buoys also provide a mean wave direction and the directional spread at 

each frequency. 

 
Figure 2.4. Different types of NDBC buoys.  The buoy on the left is a 6-meter nomad 

non-directional buoy and the one on the right is a 3-meter discus buoy, which can be 
directional or non-directional.  
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2. Coastal Data Information Program 
The Coastal Data Information Program operates (among other instruments) 

Datawell Directional Waverider buoys, a small (0.9 m diameter) buoy (Figure 2.5) with 

excellent wave-following characteristics, equipped with a three-component (x,y,z) 

acceleration sensor and a two-component (x,y) tilt sensor.  The buoy reports frequency 

spectra and directional moments in the frequency range 0.025 to 0.58 Hz every half hour 

based on 26-minute long records of x, y, and z displacements.  The frequency bandwidths 

of the spectra are 0.005 Hz below 0.1 Hz and 0.01 Hz above 0.1 Hz.   

 
Figure 2.5. CDIP Datawell Directional Waverider buoy. 

C. ANALYSIS METHODOLOGY 
Two methods of analysis were used in this validation study.  The first method 

separated and evaluated the energy transported in individual swell events.  This method 

worked well at the Pacific Ocean locations where the wave field was dominated by 

remote swell arrivals, but was less successful at the Atlantic Ocean sites usually 

dominated by local wind seas.  A simpler method applied at all buoy locations evaluated 

total wave energy transported in fixed frequency ranges over a fixed time period. 
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1. Swell Event Analysis 
A simple methodology is presented for evaluating swell spectra predictions with 

spectral buoy data.  All three models produce a nowcast (or analysis run) every 12 hours 

at 00Z and 12Z.  The NDBC buoys record data every hour and the CDIP buoys record 

data every 30 minutes.  Data from all buoys were averaged down to one record every 

three hours to provide smoother records for statistical analysis.  Swell events were 

identified by tracking peaks in the wave frequency spectrum E(f,t) in time.  The 

frequencies, directions, arrival times, and bulk energy of swell events predicted by the 

models, are compared with the buoy measurements to assess the model performance.   

a. Identifying Swell Events 
  The first step was to identify swell events in the energy spectrum as a 

function of frequency and time.  Energy spectra are often multi-modal, indicating the 

presence of swells arriving from different sources.  Only swell events that were 

reasonably well separated in frequency were considered for comparison, using a simple 

criterion 

 
1 2

1 2
0.15

f f
f f
�

�
�

 (2) 

where f1 and f2 are adjacent peak frequencies in the frequency spectrum (see Figure 2.6).   
 

b. Tracking Swell Events 
  The next step was to track swell events in time as well as frequency.  

Contour plots (see Figure 3.1 in Chapter III) of wave energy as a function of frequency 

and time illustrate the evolution of swells from the early arrival at low frequencies to the 

decay at higher frequencies as time increases (see also Munk et al., 1963).  The swell 

systems arrive at rapid intervals, usually causing the simultaneous presence of multiple 

swell events that show up as distinct peaks in the spectrum.  After tracking the spectral 

peaks as a function of time, the swell events were terminated when peak frequencies 

changed by more than 20% over a 12 hour period.  For buoys with directional data 

available, a second criterion was applied.  The event was terminated when the mean 

direction at the peak frequency changed by more than 30° in a 12 hour period.  Events 

lasting less than 48 hours were discarded. 
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To compare swell events predicted by the models with those observed by 

the buoy, individual events were matched using the following criteria: (i) the model swell 

mean direction was within 30° of the buoy mean direction, (ii) model swell event 

start/end times were within 36 hours of buoy event start/finish time, and (iii) model peak 

frequency was within 20% of buoy peak frequency.  In cases where the buoy was non-

directional, only the last two criteria were used.  The total wave energy transported past 

the buoy or model grid point (per unit crest length) over the duration of each individual 

swell event, was estimated as   

 ( ) ( )gg C f E f dfdt� ��  (3) 

where �  is the density of seawater, g  is gravity, ( ) / 4gC f g f��  is the group speed, the 

time integration is over the duration of the event, and the frequency limits are 0.85 fp and 

1.15 fp, where fp is the peak frequency. 

2. Fixed Frequency Range Analysis 
To evaluate the model performance in different frequency bands, the buoy data 

and model output were divided into 48-hour time intervals.  The bulk energy transport 

(equation (3)) was computed over each 48-hour time interval over three fixed frequency 

intervals: 0.04 to 0.08 Hz, 0.08 to 0.12 Hz, and 0.12 to 0.16 Hz, that represent low-

frequency swell, an intermediate range, and high-frequency seas.  A relatively long time 

interval was chosen so that model-data comparisons are insensitive to time lags resulting 

from the spatial separation of buoy locations and model grid points.  If any buoy data or 

model output was missing the entire 48-hour time period was discarded.  Energy 

transport estimates obtained from the buoy data and model predictions (the analysis runs) 

are compared in Chapter IV.  The accuracy of the buoy estimates is examined by 

comparing results from co-located buoys in the Appendix. 
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Figure 2.6.  Example of a bimodal energy spectrum indicating multiple swell arrivals. 
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III. RESULTS 

A. PACIFIC OCEAN 
WAM (FNMOC) and WW3 (NCEP and FNMOC) nowcasts were compared to 

buoy observations at 12 locations in the Pacific Ocean.  Results at 11 buoy locations 

along the west coast of the United States were generally similar and are illustrated here 

with comparisons at Point Conception and the California buoy.  These results are 

contrasted with the comparisons near Christmas Island in the Central Pacific region with 

strong trade winds.   

1. Point Conception Results 
The swell evolution predicted by the three models is compared with observations 

from the Point Conception buoy (CDIP 07101) in Figure 3.1. Both WW3 models capture 

the swell arrivals very well.  The WAM model, however, smoothes out the energy and 

blends two to three swell events into one event.  This smoothing may be explained by the 

fact that WAM uses a first-order upwind propagation scheme that tends to diffuse swell 

energy as the distance from the generation source increases.  The WW3 models using a 

third-order scheme are expected to be less diffusive.  Other differences between WAM 

and WW3 that may contribute to the superior performance of WW3 in this case are the 

differences in the wind input and dissipation terms. 

The predicted and observed swell peak frequencies and mean arrival directions (at 

the peak frequency) are compared in Figure 3.2.  All three models fail to capture the early 

arrival of the waves at low frequencies and WAM does not track events into the higher 

frequencies.  Generally, all three models capture frequency and mean direction of swell 

events very well.  WAM mean directions are typically 5-10° further north than the buoy 

mean directions.  During the periods when WAM smoothes multiple events together, the 

predicted directions do not correspond well with the buoy data.  Figure 3.3 shows the 

energy flux, 

 
1.15

0.85
( ) ( )

p

p

f
g

f
g E f C f df� �  (4) 
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neglecting directional spreading, versus time for one representative swell event.  All 

models underestimated the energy flux for the event.  The models also do not predict the 

early swell arrival. 

 
Figure 3.1. Contours of spectral energy versus frequency and time at Point 

Conception for a 20-day period that is representative of the entire six-month.  Gaps in the 
contour lines indicate time periods for which no buoy observations or model predictions 

were available.  The blue lines indicate events identified and tracked in time.   
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Figure 3.2. Point Conception swell comparisons.  Predicted and observed peak 

frequencies versus time are shown in the left panel.  Corresponding mean directions are 
shown in the right panel. 

 
Figure 3.3. Energy flux in W/m for one swell event at the Point Conception site.  All 

three models underestimate the energy flux and do not predict the early arrival of the 
event measured by the buoy. 
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Figure 3.4. Scatter plot of total predicted versus observed energy in J/m transported 
through the Point Conception site (per unit crest length).  Each symbol represents one 
swell event captured by both the model and the buoy.  The solid lines are the best fit 
lines, the dashed line is the one to one correspondence line.  In the legend, CC is the 

correlation coefficient and SI is the scatter index for the model.   

All models tend to under-predict the total energy for Point Conception (Figure 

3.4).  Both WW3 models have very similar results with lower bias and less scatter than 

WAM.  The scatter index is defined as the root mean square error normalized with the 

mean observed values.  As noted earlier, possible explanations for these differences 

include the first-order upwind propagation scheme in WAM diffusing energy, a better 

representation of rapid wave growth under strong wind forcing in the WW3 models, and 

differences in the dissipation source term. 

Results of model-data comparisons in fixed frequency ranges are shown in Figure 

3.5.  Whereas the NCEP WW3 model predicts accurately the energy at low (0.04-0.08 

Hz) frequencies, both the FNMOC WW3 and FNMOC WAM models under-predict the 

energy by about 50%.  There is not much difference between the two FNMOC models 

which both use NOGAPS for wind forcing, suggesting that the AVN wind forcing used 

in the NCEP WW3 model better describes the strong forcing conditions that generate low 

frequency waves. 
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In the intermediate (0.08-0.12 Hz) frequency range, the two WW3 models are 

more accurate than the WAM model.  The WAM model is biased low in high-energy 

conditions and biased high in low-energy conditions.  As noted above, these errors may 

be caused by excessive numerical diffusion in the first-order upwind propagation scheme 

of the WAM model, reducing spatial and temporal variations in wave energy.  The 

difference in the wind forcing between the FNMOC and NCEP models does not appear to 

play a role in this frequency range. 

In the highest (0.12-0.16 Hz) frequency range, smaller differences are noted 

between the three models.  There is little disparity between results obtained with third-

order and first-order schemes because waves in this range are primarily generated by 

local winds and thus less affected by numerical propagation errors. 



 
Figure 3.5. Scatter plot of total predicted versus observed energy in J/m transported through the Point Conception site (per unit 
crest length) for fixed frequency ranges.  Each symbol represents a 48-hour period.  The solid lines are the best fit lines, the dashed 

line is the one to one correspondence line.  In the text, CC is the correlation coefficient and SI is the scatter index for the model. 
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2. California Buoy Results 
The California buoy is a non-directional NDBC nomad buoy located well 

offshore, closer to the storm regions in the North Pacific.  Figure 3.6 shows the evolution 

of swell energy versus frequency and time for the same twenty-day period as in Figure 

3.1.  The spectra are broader than at the Point Conception site because the California 

buoy is closer to the storm regions.  Similar to the Point Conception results, both WW3 

models capture the swell arrivals very well, whereas the numerically diffusive WAM 

model smoothes out the energy and blends two to three swell events into one event.  

However here, NCEP WW3 resolves the swell events better than FNMOC WW3, 

particularly the low-frequency waves.   

 
Figure 3.6. Contours of spectral energy versus frequency and time for a 20-day at the 

California buoy site.  (Same format as Figure 3.1.) 

The total energy comparisons for all events (Figure 3.7) show considerably more 

scatter than the results at Point Conception (Figure 3.4).  Both FNMOC WW3 and WAM 

have a smaller scatter index than NCEP WW3.  However, only five swell events resolved 

by the FNMOC WW3 model match events measured by the buoy as compared with 17 

for NCEP WW3 and 11 for FNMOC WAM.  The scatter indices in this case are not 

meaningful because they are based on only small subsets of the 47 swell events detected 
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by the buoy.  Often the FNMOC WW3 model predicted swell events similar to those 

observed in the buoy spectra, but the timing of the swell arrivals was off by more than 36 

hours.  The NCEP WW3 model over-predicts the swell energy at this site, an error that 

appears to be associated with the close proximity to the storm generation region. 

 
Figure 3.7. Scatter plot of total predicted versus observed energy in J/m transported 
through the California Buoy site (per unit crest length).  (Same format as Figure 3.4.)   

Results of model-data comparisons in fixed frequency ranges for the California 

buoy site are shown in Figure 3.8.  These results are similar to the Point Conception site 

except that the differences between NCEP WW3 and FNMOC WW3 results in the low 

(0.04-0.08 Hz) frequency range are more pronounced.  These very different results 

obtained with the same wave model suggest that the AVN wind fields used at NCEP 

better describe the storm systems responsible for low-frequency swells than the 

NOGAPS wind fields used at FNMOC (eg. the position of the storm center and strength 

of the winds). 



 
Figure 3.8. Scatter plot of total predicted versus observed energy in J/m transported through the California buoy site (per unit crest 

length) for fixed frequency ranges.  (Same format as Figure 3.5.)

21
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3. Christmas Island Results 
Christmas Island is located on the equator south of Hawaii and is under the 

influence of the trade easterly winds throughout the Northern Hemisphere winter.  Figure 

3.9 shows contours of swell energy versus frequency and time for a representative 

twenty-day period.  All three models capture the spectral evolution well, with the 

exception of frequencies greater than 0.1 Hz that were dominated by energetic seas 

generated by the strong easterly winds that produced a continual fully developed sea with 

peak frequency of about 0.1 to 0.17 Hz.  All models grossly under-predict the energy 

levels of these seas.  At lower frequencies, the observed and predicted wave field was 

dominated by northwesterly swell.  Often the swell energy levels are much lower than 

those of the equatorial easterly wind seas, and as a result, the analysis is less successful in 

identifying swell events.  For example, notice the swell peak tracked by all three models 

on 28 January not detected in the buoy data.  The contours indicate that the buoy is 

picking up some energy in the low frequencies, but a more energetic high frequency peak 

from the equatorial winds masks this low frequency peak. 

Figure 3.10 illustrates the high amount of scatter in model predictions in this 

region.  Near Christmas Island, the models do not resolve the coastline, therefore, they 

cannot model the sheltering effects of the island.  In contrast to the California results, 

FNMOC WW3 appears to do better at Christmas Island than NCEP WW3.  Again, the 

large difference between predictions obtained with the same (WW3) model can only be 

explained by the difference in the atmospheric forcing.  Atmospheric data in the southern 

hemisphere is generally sparser than in the northern hemisphere, thus larger differences 

between NOGAPS and AVN wind fields may be expected in this region, which would 

impact swell generation. 
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Figure 3.9. Contours of spectral energy versus frequency and time for a 20-day period 
that is representative of the entire six-month study for the Christmas Island site.  (Same 

format as Figure 3.1.) 

 
Figure 3.10. Scatter plot of total predicted versus observed energy in J/m transported 
through the Christmas Island site (per unit crest length).  (Same format as Figure 3.4.) 
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Results of model-data comparisons in fixed frequency ranges for the Christmas 

Island buoy site are shown in Figure 3.11.  Unlike the previous two cases, WAM yields 

the best results at low (0.04-0.08 Hz) frequencies in this case.  The NCEP WW3 model 

tends to over-predict the energy and the FNMOC WW3 model tends to under-predict the 

energy in this frequency range.  In the intermediate (0.08-0.12 Hz) and highest (0.12-0.16 

Hz) frequency ranges, NCEP WW3 predicts the energy more accurately than the other 

two models.  The FNMOC WAM model again is biased high (low) in low (high) energy 

conditions.  The FNMOC WW3 results show the largest scatter index with a consistent 

negative bias. 



 
Figure 3.11. Scatter plots of total predicted versus observed energy in J/m transported through the Christmas Island site (per unit 

crest length) for fixed frequency ranges.  (Same format as Figure 3.5.)
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B. ATLANTIC OCEAN 
All three buoys on the eastern coast of the United States are non-directional 

NDBC nomad buoys.  The swell events were shorter in this region than those seen in the 

Pacific.  Nor'easter storms develop from blocked lows that can originate anywhere from 

the Rocky Mountains to the Bahamas.  The lows move north or northeast and pass across 

the eastern seaboard into the open ocean.  While these storms force a broad spectrum of 

waves, low frequency (fp < 0.07 Hz) swell is rarely observed at the Atlantic sites.  The 

spectral evolution predicted by the three models is compared with the observations from 

the Georges Bank buoy in Figure 3.12.  All three models capture the spectral evolution of 

the seas well.  Both WW3 models occasionally predict low frequency swell peaks that are 

not detected in the buoy data (e.g. 21 and 26 November), possibly because energy levels 

were relatively low.   

 
Figure 3.12. Contours of spectral energy versus frequency and time for a 20-day period 

that is representative of the entire six-month study for the Georges Bank site. (Same 
format as Figure 3.1.) 

Only the fixed frequency band analysis of energy levels was conducted on the 

three east coast buoys.  The results for the Georges Bank are shown in Figure 3.13.  In 

the low frequency range, all three models grossly under-predict the energy, in particular, 
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WW3 at both forecasting centers.  The large errors may be caused in part by the fact that 

often there is no swell and these comparisons are in the low-frequency tail of the wind-

sea spectrum.  In the intermediate frequency range, all three models show better results 

with the lowest scatter index for WAM predictions.  The majority of the wave energy is 

usually contained in the highest frequency range where all three models yield accurate 

predictions.  Here, both FNMOC WW3 and NCEP WW3 have a lower scatter index than 

WAM. 



 
 

Figure 3.13. Scatter plot of total predicted versus observed energy in J/m transported through the Georges Bank site (per unit crest 
length) for fixed frequency ranges.  (Same format as Figure 3.5.)
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IV. MODEL SKILL 

A. SWELL EVENTS 
The first method of analysis used in this validation study identified individual 

swell events in the evolution of wave energy in frequency and time.  Swell events 

identified in the model nowcasts were matched to those observed in the buoy data and the 

total energy transport in the predicted and observed swell event were compared.  This 

method worked well at the West Coast locations, but was less successful at the East Coast 

and Christmas Island sites, probably due to the predominance of locally generated waves.   

Here a summary of the comparisons at all 11 West Coast sites is presented.  

Scatter indices were computed for the predictions of the total energy transport in each 

swell event resolved by the model.  Figure 4.1 shows the scatter indices for the three 

models at all buoy sites and Figure 4.2 shows the number of events resolved by each 

model.   

At all sites, NCEP WW3 resolves more swell events than the other two models.  

The three models have comparable scatter indices that vary considerably from site to site.  

Results at some buoy sites may be affected by their close proximity to the coast (e.g. 

46011, 46022, 46028, and 46063).  In some cases, the scatter index is not useful because 

only a few swell events were resolved (e.g. FNMOC WW3 at 46047 and 46059, and both 

FNMOC models at 46011).  The rather different results obtained with WW3 at NCEP 

and FNMOC suggests that swell forecasts are sensitive to the wind forcing models.  The 

NOGAPS model at FNMOC is known to have a tendency to under-predict winds 

associated with deepening storms over ocean basins, consequently, both FNMOC wave 

models under-predict the wave energy and can miss swell events.  The AVN model at 

NCEP has a high bias for wind speeds less than 7 m/s and low bias for wind speeds 

greater than 7 m/s.  Other possible sources of error could be due to the location of grid 

points.  Not all grid points are co-located with the buoy sites.  The grid points used for 

FNMOC WW3 and WAM are the closest grid points to the buoy sites.  The NCEP WW3 

model interpolates the spectrum at the West Coast buoy locations from model output at 

surrounding grid points.   
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Additionally, some of the differences in model performance at different buoy sites 

may be related to the type of buoy used in the analysis.  For example, two buoys, CDIP 

07101 and NDBC 46063, located near Point Conception should yield nearly the same 

results because the same swells pass through these two buoys.  However, the CDIP buoy 

is directional and the NDBC buoy is non-directional.  Adding the directionality criterion 

to swell event identification (see Chapter II section C.1.b) appears to significantly affect 

the results.  For all three models, the number of swell events that match those of 

directional buoy 07101 is about twice the number that match those of non-directional 

buoy 46063. 

 
Figure 4.1. Bar graph of scatter indices for all three models at each buoy location.  

Each bar represents the scatter index of model errors in the energy transport of individual 
swell events based on comparison with estimates based on the buoy data.  The first 3 

buoys are the CDIP sites and the last 8 buoys are the NDBC sites. 
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Figure 4.2. Bar graph of the number of swell events resolved for each model at each 

buoy location. 

B. ENERGY TRANSPORT IN FIXED FREQUENCY BANDS 
The second method of analysis for this validation study evaluated the total energy 

transported in three separate frequency bands over 48-hour time intervals.  This more 

robust method, applied at all fifteen buoy sites, compares the models for the entire length 

of the study, rather than just isolated events.  Similar to the swell event comparison, 

scatter indices for each buoy location are examined in Figures 4.3-4.5 for the three 

frequency ranges.   

In the low-frequency (0.04-0.08 Hz) range (Figure 4.3), errors for all three models 

are similar at Christmas Island (scatter indices 0.39-0.57), the NCEP WW3 model has a 

markedly lower scatter index for all the West Coast buoy sites (0.27-0.63) than the 

FNMOC WW3 (0.43-0.78) and WAM (0.40-0.76) models.  On the other hand, the 

FNMOC WAM model has a lower scatter index for the East Coast buoy sites (0.59-0.76) 

than the NCEP (0.80-0.90) and FNMOC WW3 (0.93-0.95) models.  The large errors in 

this frequency band at the East Coast sites can be explained by the fact that low-

frequency swell is rare in the Atlantic Ocean.   
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Figure 4.3. Bar graph of scatter indices for all three models at each buoy location.  

Each bar represents the scatter index of energy transported over 48-hour intervals within 
the 0.04-0.08 Hz frequency band.  The first three buoys are the Atlantic sites, the 

remaining twelve buoys are the Pacific sites. 

In the intermediate (0.08-0.12 Hz) frequency band (Figure 4.4) the differences 

between the models are smaller.  The scatter indices are generally larger at the Atlantic 

sites (0.45-0.66) than at the Pacific sites (0.22-0.61).  The NCEP WW3 model has a 

lower scatter index than both FNMOC models at two East Coast sites and eight Pacific 

sites.  The FNMOC WW3 model has the highest scatter index at all East Coast sites and 

seven Pacific sites.  As with the 0.04-0.08 Hz frequency band, the two FNMOC models 

generally under-predict the energy in this frequency band more than the NCEP model, 

especially in high-energy conditions.   
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Figure 4.4. Bar graph of scatter indices for the 0.08-0.12 Hz frequency band.  (Same 

format as Figure 4.3.) 

In the highest (0.12-0.16 Hz) frequency range, NCEP WW3 generally yields the 

best predictions with the lowest scatter index at the nine buoy sites (Figure 4.5).  

However, the differences are small with scatter indices varying between 0.23 and 0.62 for 

NCEP WW3, between 0.28 and 0.67 for FNMOC WW3, and between 0.28 and 0.61 for 

FNMOC WAM.  At the East Coast buoy sites, the scatter indices for all three models are 

much lower (0.27-0.47) than in the lower frequency ranges, probably because most of the 

wave energy at the Atlantic sites is usually in the highest frequency range.  At the Pacific 

sites, the model performance is more variable with the scatter indices that are comparable 

to those in the intermediate frequency range.   



 34

 
Figure 4.5. Bar graph of scatter indices for the 0.04-0.08 Hz frequency band.  (Same 

format as Figure 4.3.) 
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V. CONCLUSIONS 

The purpose of this study is to develop a methodology for comparing spectral 

information from global wave prediction models with buoy data and use this method to 

evaluate and compare operational models at FNMOC and NCEP.  The WAM model uses 

a first-order upwind propagation scheme and well established formulations of the source 

terms, and is forced by NOGAPS winds.  The WW3 model, now operational at NCEP 

and FNMOC, uses a more sophisticated third-order propagation scheme with new 

formulations of wind input and dissipation source terms (Tolman and Chalikov, 1996).  

The WW3 models at NCEP and FNMOC are identical except for the wind forcing.  The 

NCEP WW3 model is forced by GDAS/AVN winds and the FNMOC WW3 model is 

forced by NOGAPS winds.   

Two methods of analysis were conducted over a six-month period for fifteen buoy 

sites in the Atlantic and Pacific Oceans.  The first method of analysis identified and 

compared individual swell events predicted by the models and observed at the buoys. 

Swell events were identified by tracking well separated peaks in the frequency spectrum 

in time.  Results indicate that all three models under-predicted the total energy for swell 

events at both the Pacific and the Atlantic Ocean buoy sites. The WW3 predictions 

resolved swell events better than the WAM predictions, probably because the third-order 

scheme in WW3 is less diffusive than the first-order scheme in WAM.  The method was 

less successful at the Atlantic Ocean buoy sites and Christmas Island, where wave spectra 

were usually dominated by locally generated wind sea (e.g. nor-easters and trade winds).   

The second, more robust method of analysis involved separating the spectra into 

three fixed frequency ranges: 0.04-0.08 Hz, 0.08-0.12 Hz, and 0.12-0.16 Hz.  This 

method worked well at all buoy sites.  In most cases, all models under-predict energy in 

the three frequency bands.  Results in the lowest frequency range indicated that NCEP 

WW3 had the lowest scatter index at all buoy sites.  Significant differences between 

results of WW3 models forced by different wind fields suggest that the GDAS/AVN 

model provides more accurate wind fields than the NOGAPS model for the dominant 

Pacific storms that drive low-frequency swell.  In the Atlantic, the three models yielded 



 36

similar results with large scatter indices owing to the absence of low-frequency swell.  In 

the intermediate frequency range, differences between Atlantic and Pacific results were 

smaller, as were differences between different models.  At most sites, NCEP WW3 

yielded the lower scatter index.  In the highest frequency band dominated by locally 

generated seas, all three models yielded similar results with low scatter indices at the 

Atlantic and most Pacific sites. 
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APPENDIX 

Three different types of buoys, Datawell Directional Waverider, NDBC 3-meter 

discus, and NDBC 6-meter Nomad, were used in this validation study (Figure A.1).  One 

of each type of buoy was located near Point Conception, allowing for buoy-buoy inter-

comparisons.  The three buoys have very different hull shapes, as well as different 

sensors as discussed in Chapter II.  The frequency band analysis (Chapter II, section C.2) 

was conducted on these buoys to compare how they differed in their spectral wave 

measurements.  The results are shown in Figure A.1. 

The top three scatter plots compare energy estimates of the 6-meter Nomad buoy 

46063 with the Datawell buoy 07101 for the three frequency bands.  The Nomad buoy 

estimates are biased high in the 0.04-0.08 Hz and 0.08-0.12 Hz frequency bands.  The 

scatter index decreases with increasing frequency.  The bottom three scatter plots 

compare the Nomad buoy 46063 with 3-meter discus buoy 46011.  There is very little 

bias and comparable scatter in each frequency band.  Overall, the scatter indices in these 

buoy-buoy inter-comparisons are much smaller than those in the buoy-model inter-

comparisons (Chapter V), confirming that the buoys provide reliable ground truth data 

for the evaluations of the models. 

 



 
Figure A.1 Six Scatter plots of total predicted versus observed energy in J/m transported through the Point Conception site (per 

unit crest length) for three frequency bands.  The top three scatter plots compare NDBC 46063,a 6 m nomad buoy, with CDIP 07101, 
a Datawell buoy.  The bottom three plots compare the two NDBC buoys, 46063 and 46011, a 3 m discus buoy.  Each symbol 

represents a 48-hour period.  The solid lines are the best fit lines, the dashed line is the one to one correspondence line.  In the legend, 
CC is the correlation coefficient and SI is the scatter index for the model.
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